Computation of Saddle-Type Slow Manifolds Using Iterative Methods
نویسنده
چکیده
This paper presents an alternative approach for the computation of trajectory segments on slow manifolds of saddle type. This approach is based on iterative methods rather than collocation-type methods. Compared to collocation methods, which require mesh refinements to ensure uniform convergence with respect to , appropriate estimates are directly attainable using the method of this paper. The method is applied to several examples, including a model for a pair of neurons coupled by reciprocal inhibition with two slow and two fast variables, and the computation of homoclinic connections in the FitzHugh–Nagumo system.
منابع مشابه
Generalized iterative methods for solving double saddle point problem
In this paper, we develop some stationary iterative schemes in block forms for solving double saddle point problem. To this end, we first generalize the Jacobi iterative method and study its convergence under certain condition. Moreover, using a relaxation parameter, the weighted version of the Jacobi method together with its convergence analysis are considered. Furthermore, we extend a method...
متن کاملComputing Slow Manifolds of Saddle Type
Slow manifolds are important geometric structures in the state spaces of dynamical systems with multiple time scales. This paper introduces an algorithm for computing trajectories on slow manifolds that are normally hyperbolic with both stable and unstable fast manifolds. We present two examples of bifurcation problems where these manifolds play a key role and a third example in which saddle-ty...
متن کاملConvergence Properties of Hermitian and Skew Hermitian Splitting Methods
In this paper we consider the solutions of linear systems of saddle point problems. By using the spectrum of a quadratic matrix polynomial, we study the eigenvalues of the iterative matrix of the Hermitian and skew Hermitian splitting method.
متن کاملComputing One-Dimensional Global Manifolds of Poincaré Maps by Continuation
We present an algorithm to compute one-dimensional stable and unstable manifolds of saddle periodic orbits in a Poincaré section. The computation is set up as a boundary value problem by restricting the beginning and end points of orbit segments to the section. Starting from the periodic orbit itself, we use collocation routines from AUTO to continue the solutions of the boundary value problem ...
متن کاملA Saddle Point Approach to the Computation of Harmonic Maps
In this paper we consider numerical approximations of a constraint minimization problem, where the object function is a quadratic Dirichlet functional for vector fields and the interior constraint is given by a convex function. The solutions of this problem are usually referred to as harmonic maps. The solution is characterized by a nonlinear saddle point problem, and the corresponding lineariz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Applied Dynamical Systems
دوره 14 شماره
صفحات -
تاریخ انتشار 2015